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1. 

Recently, in the context of a project study, a need was felt to gain insight into how
the sensitivity of the eigenfrequencies of longitudinally vibrating elastic rods is
restrained by a linear spring in-span with respect to small changes of the spring
attachment point. As the corresponding frequency equation could not be found
in the technical literature, except for the case when the spring acts at the tip [1],
it was necessary to derive the frequency equation first. Afterwards, the mode
shapes are given and finally a sensitivity formula is established. It is not claimed
that the results presented in this letter have extreme originality. But, the authors
have the opinion that the expressions derived here can be useful for a design
engineer who is interested in the eigencharacteristics of similar systems and their
sensitivity.

2. 

The problem to be investigated in the present note is the natural vibration
problem of the system shown in Figure 1. It consists of a fixed–free axially
vibrating elastic rod, which is restrained by a linear spring in-span. The length,
mass per unit length, location of the spring attachment point, axial rigidity and
the stiffness coefficient of the spring are L, m, hL, EA and k, respectively. The
equations of the longitudinal motion of the two-rod portions are the well-known
partial differential equations

EA 12ui (x, t)/1x2 =m 12ui (x, t)/1t2, (i=1, 2), (1)

Figure 1. Longitudinally vibrating elastic rod restrained by a linear spring in-span.
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where u1(x, t) and u2(x, t) denote the axial displacements of the rod portions to
the left and right of the spring attachment at x and time t. The corresponding
boundary and matching conditions are:

u1(0, t)=0, u1(hL, t)= u2(hL, t),

EAu'1 (hL, t)−EAu'2 (hL, t)+ ku1(hL, t)=0, u'2 (L, t)=0. (2)

Here, prime denotes the partial derivatives with respect to the position co-ordinate
x. Using the standard method of separation of variables one assumes

ui (x, t)=Ui (x) cos vt, (i=1, 2), (3)

where Ui (x) are the corresponding amplitude functions of the rods and v is the
unknown eigenfrequency of the vibrating system. Substituting these into equations
(1) results in the following ordinary differential equations

U0i (x)+ b2Ui (x)=0, (i=1, 2), (4)

where

b2 =mv2/EA (5)

is introduced.
Substitution of (3) into (2) yields the corresponding boundary and matching

conditions for the amplitude function Ui (x):

U1(0)=0, U1(hL)=U2(hL),

EAU'1 (hL)−EAU'2 (hL)+ kU1(hL)=0, U'2 (L)=0. (6)

The general solutions of the ordinary differential equations (4) are simply

U1(x)= c1 sin bx+ c2 cos bx, U2(x)= c3 sin bx+ c4 cos bx, (7)

where c1–c4 are four integration constants to be evaluated via conditions (6). The
application of these conditions to the solutions (7) yields a set of four
homogeneous equations for the four unknown constants c1, . . . , c4.

A non-trivial solution of this set of equations is possible only if the characteristic
determinant of the coefficients vanishes. This condition leads to the equation

b� cos b�+ ak sin hb� cos [(1− h)b�]=0, (8)

where

b�= bL, ak = k/EA/L. (9)

The equation (8) is the frequency equation of the system shown in Figure 1. Its
numerical solution yields the dimensionless eigenfrequency parameters b�, which
then given via (5) the unknown eigenfrequencies v of the system.
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It is interesting to consider the special case h=1, which corresponds physically
to the case that the restraining spring acts at the free end of the rod. In this case,
the frequency equation above reduces to the simple form

b� cos b�+ ak sin b�=0, (10)

which is also given in reference [1] in a different notation.
The interest here lies not only in obtaining the eigenfrequencies of the system,

but also in the mode shapes of the system. Considering that c2 vanishes, and
choosing c1 =1 arbitrarily the set of homogeneous equations mentioned above
yields

c3 =1+(ak /2b�) sin 2hb�, c4 =−(ak /b�) sin2 hb�, (11)

such that the mode shapes are obtained from equations (7) in the forms

U1(x̄)= sin b�x̄, U2(x̄)=01+
ak

2b� sin 2hb�1 sin b�x̄−
ak

b� sin2 hb� cos b�x̄ (12)

where the non-dimensional position co-ordinate x̄= x/L is introduced.
The final aim is to give in the following a formula for the sensitivity of the

eigenfrequencies of the system in Figure 1 with respect to small changes in the
location of the in-span spring attachment point around its nominal position, i.e.,
the rate of change of the eigenfrequencies with respect to the location parameter
h. To this end, the frequency equation (8) has to be differentiated partially with
respect to h. This operation yields after some rearrangements

1b�/1h=−akb�(p/q), (13)

where the following abbreviations are introduced.

p=cos [(1−2h)b�],

q=cos b�− b� sin b�+ ak{h cos [(1−2h)b�]− sin hb� sin [(1−2h)b�]}. (14)

It is now possible to give an approximate formula for the modified value b�mod of
a non-dimensionalized eigenfrequency if the location of the spring attachment
point is changed slightly by an amount Dh

b�mod 1 b�(h)+ (1b�/1h)Dh. (15)

3.  

This section is devoted to the numerical evaluation of the formulae established
in the proceeding section. The numerical solution of the frequency equation and
production of the mode shapes were carried out using MATLAB. The first two
dimensionless eigenfrequency parameters b�1 and b�2 are given in Table 1 for various
values of the location and stiffness parameters h and ak , respectively, which include
a sufficiently great range of practical applications. For further numerical
applications, the following values are chosen for the non-dimensional data of the
mechanical system in Figure 1: h=0·5 and ak =1. The selected data means that
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Figure 2. Mode shapes of the system in Figure 1 for h=0·5, ak =1·0: ——, first mode; ---, second
mode; –·–·–·–, third mode.

the spring acts at the mid-point of the rod and the stiffness of the linear spring
is equal to the tip stiffness of the rod. The numerical solution of the frequency
equation (8) yields the first three non-dimensional eigenfrequencies of the system
as b�1 =1·836597, b�2 =4·815842 and b�3 =7·917053. The first two of these values
are also included in Table 1. The corresponding mode shapes are given in the
Figure 2. It is worth noting that similarity with the results reported in reference
[2]; the mode shape curves have a small break at the point of spring attachment,

T 2

Comparison of the dimensionless fundamental frequency parameter b�1 if the spring
attachment point is moved slightly from the nominal value h=0·5, ak =0·5 is taken

b�1 of the modified system
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

h from eq. (8) from eq. (15) h from eq. (8) from eq. (15)

0·425 1·681669 1·681249 0·500 1·715507 1·715507
0·430 1·683879 1·683533 0·505 1·717791 1·717791
0·435 1·686098 1·685817 0·510 1·720075 1·720075
0·440 1·688326 1·688100 0·515 1·722358 1·722359
0·445 1·690561 1·690384 0·520 1·724640 1·724643
0·450 1·692804 1·692668 0·525 1·726920 1·726927
0·455 1·695054 1·694952 0·530 1·729197 1·729210
0·460 1·697310 1·697236 0·535 1·731470 1·731494
0·465 1·699571 1·699520 0·540 1·733739 1·733778
0·470 1·701838 1·701804 0·545 1·736004 1·736062
0·475 1·704109 1·704088 0·550 1·738262 1·738346
0·480 1·706383 1·706372 0·555 1·740514 1·740630
0·485 1·708661 1·708605 0·560 1·742759 1·742914
0·490 1·710941 1·710939 0·565 1·744996 1·745198
0·495 1·713224 1·713223 0·570 1·747225 1·747482

0·575 1·749444 1·749766
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i.e., at x=0·5L. This can be explained best via the matching condition in (6),
which is rearranged as

(U'2 −U'1 )=x̄= h = ak (U1)=x̄= h , (16)

where a prime denotes partial differentiation with respect to the non-dimensional
position co-ordinate x̄. The left side of the above expression corresponds to the
difference of the slopes of the curves U2(x̄) and U1(x̄) at the point of the spring
attachment point. According to the right side, this difference is proportional to
the dimensionless spring constant ak . Hence, the breaks in Figure 2 would be much
more pronounced if ak has a greater value than 1·0.

Table 2 gives an indication of the accuracy of the sensitivity-related formula
(15). As an application, the fundamental frequency parameters from the numerical
solution of the frequency equation (8) are given together with approximate values
obtained from the formula (15), assuming that slight changes occurred around the
nominal spring attachment point h=0·5 (ak is taken as 0·5). For the data chosen,
the formula (13) results in 1b�/1h=0·456778188. The values in the second column
are fundamental frequency parameters calculated from the equation (8), in other
words, these are the ‘‘exact’’ values. The values collected in the third column
originate from the sensitivity-based formula (15). The comparison of the values
in the second and third columns indicates clearly that the formula (15) gives very
accurate approximations to the dimensionless eigenfrequencies of the modified
system without having to solve the frequency equation (8) for the parameters of
the modified system.

4. 

This note is concerned with the natural vibration problem of a mechanical
system, consisting of a fixed–free axially vibrating elastic rod which is restrained
by a linear spring in-span. The frequency equation of the system is derived first.
Then the mode shapes are given and finally a sensitivity formula is established.
Numerical results are given in form of two tables.
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